Part Number Hot Search : 
MMBD444 032J4 RLZ33B U6205 107SAK16 FMG23S EU02A DB104
Product Description
Full Text Search
 

To Download LT1014ACJPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  lt1013/lt1014  10134fd typical a pplica t ion descrip t ion quad precision op amp (lt1014) dual precision op amp (lt1013) the lt ? 1014 is the frst precision quad operational amplifer which directly upgrades designs in the industry standard 14-pin dip lm324/lm348/op-11/4156 pin confguration. it is no longer necessary to compromise specifcations, while saving board space and cost, as compared to single operational amplifers. the lt1014s low offset voltage of 50v, drift of 0.3v/c, offset current of 0.15na, gain of 8 million, common mode rejection of 117db and power supply rejection of 120db qualify it as four truly precision operational amplifers. particularly important is the low offset voltage, since no offset null terminals are provided in the quad confguration. although supply current is only 350a per amplifer, a new output stage design sources and sinks in excess of 20ma of load current, while retaining high voltage gain. similarly, the lt1013 is the frst precision dual op amp in the 8-pin industry standard confguration, upgrading the per- formance of such popular devices as the mc1458/mc1558, lm158 and op-221. the lt1013s specifcations are similar to (even somewhat better than) the lt1014s. both the lt1013 and lt1014 can be operated off a single 5v power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. crossover distortion, so apparent on previous single-supply designs, is eliminated. a full set of specifca- tions is provided with 15v and single 5v supplies. fea t ures a pplica t ions n single supply operation input voltage range extends to ground output swings to ground while sinking current n pin compatible to 1458 and 324 with precision specs n guaranteed offset voltage: 150v max n guaranteed low drift: 2v/c max n guaranteed offset current: 0.8na max n guaranteed high gain 5ma load current: 1.5 million min 17ma load current: 0.8 million min n guaranteed low supply current: 500a max n low voltage noise, 0.1hz to 10hz: 0.55v p-p n low current noisebetter than 0p-07, 0.07pa/ hz n battery-powered precision instrumentation strain gauge signal conditioners thermocouple amplifers instrumentation amplifers n 4ma to 20ma current loop transmitters n multiple limit threshold detection n active filters n multiple gain blocks ? + lt1014 1 4 11 2 3 5v 5v 1m 4k output a 10mv/c ? + lt1014 7 6 5 1m output b 10mv/c 4k 1.8k ysi 44007 5k at 25c 260 1684 299k 3k lt1004 1.2v 14 12 13 ? + lt1014 use type k thermocouples. all resistors = 1% film. cold junction compensation accurate to 1c from 0c to 60c. use 4th amplifier for output c. lt1014 distribution of offset voltage 3-channel thermocouple thermometer input offset voltage (v) ?300 0 200 ?200 ?100 100 300 number of units 700 600 500 400 300 200 100 0 v s = 15v t a = 25c 425 lt1014s (1700 op amps) tested from three runs j package 1013/14 ta02 l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners.
lt1013/lt1014  10134fd a bsolu t e maxi m u m r a t ings p in c on f igura t ion supply voltage ....................................................... 22v differential input voltage........................................ 30v input voltage ................ equal to positive supply voltage ............ 5v below negative supply voltage output short-circuit duration .......................... indefnite storage temperature range all grades ..........................................C 65c to 150c lead temperature (soldering, 10 sec.) ................. 300c operating temperature range l t1013am/l t1013m/ l t1014am/l t1014m .........................C 55 c to 125c l t1013ac/l t1013c/lt1013d l t1014ac/l t1014c/lt1014d................... 0c to 70c l t1013i/ l t1014i .................................C 40c to 85c (note 1) obsolete package obsolete package consider the n or s8 packages for alternate source obsolete package consider the n or sw packages for alternate source consider the n or s8 (not n8) packages for alternate source lt1013 lt1013 lt1013 1 2 3 4 8 7 6 5 top view ?ina outa v + outb +ina v ? +inb ?inb s8 package 8-lead plastic so + ? + ? note: this pin configuration differs from the standard 8-pin dual-in-line configuration t jmax = 150c, ja = 190c/w 1 2 3 4 8 7 6 5 top view output a ?in a +in a v ? v + output b ?in b +in b n8 package 8-lead pdip t jmax = 150c, q ja = 130c j8 package 8-lead cerdip t jmax = 150c, q ja = 100c ? + a ? + b ? + b top view output b v + output a ?in a ?in b +in b +in a v ? (case) 8 7 6 5 3 2 1 4 h package 8-lead to-5 metal can ? + a t jmax = 125c, ja = 55c/w lt1014 lt1014 1 2 3 4 5 6 7 8 top view sw package 16-lead plastic so 16 15 14 13 12 11 10 9 output a ?in a +in a v + +in b ?in b output b nc output d ?in d +in d v ? +in c ?in c output c nc t jmax = 150c, ja = 130c/w 1 2 3 4 5 6 7 top view n package 14-lead pdip t jmax = 150c, q ja = 100c j package 14-lead cerdip t jmax = 150c, q ja = 100c 14 13 12 11 10 9 8 output a ?in a +in a v + +in b ?in b output b output d ?in d +in d v ? +in c ?in c output c ? + a ? + d ? + b ? + c
lt1013/lt1014  10134fd o r d er i n f or m a t ion lead free finish tape and reel part marking package description temperature range lt1013ds8#pbf lt1013ds8#trpbf 1013 8-lead plastic so 0c to 70c lt1013is8#pbf lt1013is8#trpbf 1013i 8-lead plastic so C40c to 85c lt1013acn8#pbf lt1013acn8#trpbf lt1013acn8 8-lead pdip 0c to 70c lt1013cn8#pbf lt1013cn8#trpbf lt1013cn8 8-lead pdip 0c to 70c lt1013dn8#pbf lt1013dn8#trpbf lt1013dn8 8-lead pdip 0c to 70c lt1013in8#pbf lt1013in8#trpbf lt1013in8 8-lead pdip C40c to 85c lt1014dsw#pbf lt1014dsw#trpbf lt1014dsw 16-lead plastic so 0c to 70c lt1014isw#pbf lt1014isw#trpbf lt1014isw 16-lead plastic so C40c to 85c lt1014acn#pbf lt1014acn#trpbf lt1014acn 14-lead pdip 0c to 70c lt1014cn#pbf lt1014cn#trpbf lt1014cn 14-lead pdip 0c to 70c lt1014dn#pbf lt1014dn#trpbf lt1014dn 14-lead pdip 0c to 70c lt1014in#pbf lt1014in#trpbf lt1014in 14-lead pdip C40c to 85c lt1013amj8#pbf lt1013amj8#trpbf lt1013amj8 8-lead cerdip C55c to 125c (obsolete) lt1013mj8#pbf lt1013mj8#trpbf lt1013mj8 8-lead cerdip C55c to 125c (obsolete) lt1013acj8#pbf lt1013acj8#trpbf lt1013acj8 8-lead cerdip 0c to 70c (obsolete) lt1013cj8#pbf lt1013cj8#trpbf lt1013cj8 8-lead cerdip 0c to 70c (obsolete) lt1013amh#pbf lt1013amh#trpbf lt1013amh 8-lead to-5 metal can C55c to 125c (obsolete) lt1013mh#pbf lt1013mh#trpbf lt1013mh 8-lead to-5 metal can C55c to 125c (obsolete) lt1013ach#pbf lt1013ach#trpbf lt1013ach 8-lead to-5 metal can 0c to 70c (obsolete) lt1013ch#pbf lt1013ch#trpbf lt1013ch 8-lead to-5 metal can 0c to 70c (obsolete) lt1014amj#pbf lt1014amj#trpbf lt1014amj 14-lead cerdip C55c to 125c (obsolete) lt1014mj#pbf lt1014mj#trpbf lt1014mj 14-lead cerdip C55c to 125c (obsolete) lt1014acj#pbf lt1014acj#trpbf lt1014acj 14-lead cerdip 0c to 70c (obsolete) lt1014cj#pbf lt1014cj#trpbf lt1014cj 14-lead cerdip 0c to 70c (obsolete) consult ltc marketing for parts specifed with wider operating temperature ranges. consult ltc marketing for information on non-standard lead based fnish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifcations, go to: http://www.linear.com/tapeandreel/
lt1013/lt1014  10134fd e lec t rical c harac t eris t ics symbol parameter conditions lt1013am/ac lt1014am/ac lt1013c/d/i/m lt1014c/d/i/m units min typ max min typ max v os input offset voltage lt1013 lt1014 lt1013d/i, lt1014d/i 40 50 150 180 60 60 200 300 300 800 v v v long-term input offset voltage stability 0.4 0.5 v/mo. i so input offset current 0.15 0.8 0.2 1.5 na i b input bias current 12 20 15 30 na e n input noise voltage 0.1hz to 10hz 0.55 0.55 v p-p e n input noise voltage density f o = 10hz f o = 1000hz 24 22 24 22 nv/ hz nv/ hz i n input noise current density f o = 10hz 0.07 0.07 pa/hz input resistance C differential common mode (note 2) 100 400 5 70 300 4 m g a vol large-signal voltage gain v o = 10v, r l = 2k v o = 10v, r l = 600 1.5 0.8 8.0 2.5 1.2 0.5 7.0 2.0 v/v v/v input voltage range 13.5 C 15.0 13.8 C 15.3 13.5 C 15.0 13.8 C 15.3 v v cmrr common mode rejection ratio v cm = 13.5v, C 15.0v 100 117 97 114 db psrr power supply rejection ratio v s = 2v to 18v 103 120 100 117 db channel separation v o = 10v, r l = 2k 123 140 120 137 db v out output voltage swing r l = 2k 13 14 12.5 14 v slew rate 0.2 0.4 0.2 0.4 v/s i s supply current per amplifer 0.35 0.50 0.35 0.55 ma t a = 25c. v s = 15v, v cm = 0v unless otherwise noted. symbol parameter conditions lt1013am/ac lt1014am/ac lt1013c/d/i/m lt1014c/d/i/m units min typ max min typ max v os input offset voltage lt1013 lt1014 lt1013d/i, lt1014d/i 60 70 250 280 90 90 250 450 450 950 v v v i os input offset current 0.2 1.3 0.3 2.0 na i b input bias current 15 35 18 50 na a vol large-signal voltage gain v o = 5mv to 4v, r l = 500 1.0 1.0 v/v input voltage range 3.5 3.8 C 0.3 3.5 0 3.8 C 0.3 v v v out output voltage swing output low, no load output low, 600 to ground output low, i sink = 1ma output high, no load output high, 600 to ground 4.0 3.4 15 5 220 4.4 4.0 25 10 350 4.0 3.4 15 5 220 4.4 4.0 25 10 350 mv mv mv v v i s supply current per amplifer 0.31 0.45 0.32 0.50 ma t a = 25c. v s + = 5v, v s C = 0v, v out = 1.4v, v cm = 0v unless otherwise noted
lt1013/lt1014  10134fd the l denotes the specifcations which apply over the temperature range C 55c t a 125c. v s = 15v, v cm = 0v unless otherwise noted. e lec t rical c harac t eris t ics symbol parameter conditions lt1013am lt1014am lt1013m/lt1014m units min typ max min typ max min typ max v os input offset voltage v s = 5v, 0v; v o = 1.4v C 55c t a 100c v cm = 0.1v, t a = 125c v cm = 0v, t a = 125c l l 80 80 120 250 300 450 450 900 90 90 150 300 350 480 480 960 110 100 200 400 550 750 750 1500 v v v v input offset voltage drift (note 3) l 0.4 2.0 0.4 2.0 0.5 2.5 v/c i os input offset current v s = 5v, 0v; v o = 1.4v l l 0.3 0.6 2.5 6.0 0.3 0.7 2.8 7.0 0.4 0.9 5.0 10.0 na na i b input bias current v s = 5v, 0v; v o = 1.4v l l 15 20 30 80 15 25 30 90 18 28 45 120 na na a vol large-signal voltage gain v o = 10v, r l = 2k l 0.5 2.0 0.4 2.0 0.25 2.0 v/v cmrr common mode rejection v cm = 13.0v, C 14.9v l 97 114 96 114 94 113 db psrr power supply rejection ratio v s = 2v to 18v l 100 117 100 117 97 116 db v out output voltage swing r l = 2k v s = 5v, 0v r l = 600 to ground output low output high l l l 12 3.2 13.8 6 3.8 15 12 3.2 13.8 6 3.8 15 11.5 3.1 13.8 6 3.8 18 v mv v i s supply current per amplifer v s = 5v, 0v; v o = 1.4v l l 0.38 0.34 0.60 0.55 0.38 0.34 0.60 0.55 0.38 0.34 0.7 0.65 ma ma
lt1013/lt1014  10134fd e lec t rical c harac t eris t ics symbol parameter conditions lt1013ac lt1014ac lt1013c/d/i lt1014c/d/i units min typ max min typ max min typ max v os input offset voltage lt1013d/i, lt1014d/i v s = 5v, 0v; v o = 1.4v lt1013d/i, lt1014d/i v s = 5v, 0v; v o = 1.4v l l l l 55 75 240 350 65 85 270 380 80 230 110 280 400 1000 570 1200 v v v v average input offset voltage drift (note 3) lt1013d/i, lt1014d/i l l 0.3 2.0 0.3 2.0 0.4 0.7 2.5 5.0 v/c v/c i os input offset current v s = 5v, 0v; v o = 1.4v l l 0.2 0.4 1.5 3.5 0.2 0.4 1.7 4.0 0.3 0.5 2.8 6.0 na na i b input bias current v s = 5v, 0v; v o = 1.4v l l 13 18 25 55 13 20 25 60 16 24 38 90 na na a vol large-signal voltage gain v o = 10v, r l = 2k l 1.0 5.0 1.0 5.0 0.7 4.0 v/v cmrr common mode rejection ratio v cm = 13.0v, C15.0v l 98 116 98 116 94 113 db psrr power supply rejection ratio v s = 2v to 18v l 101 119 101 119 97 116 db v out output voltage swing r l = 2k v s = 5v, 0v; r l = 600 output low output high l l l 12.5 3.3 13.9 6 3.9 13 12.5 3.3 13.9 6 3.9 13 12.0 3.2 13.9 6 3.9 13 v mv v i s supply current per amplifer v s = 5v, 0v; v o = 1.4v l l 0.36 0.32 0.55 0.50 0.36 0.32 0.55 0.50 0.37 0.34 0.60 0.55 ma ma note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute rating condition for extended periods may affect device reliability and lifetime. the l denotes the specifcations which apply over the temperature range C40c t a 85c for lt1013i, lt1014i, 0c t a 70c for lt1013c, lt1013d, lt1014c, lt1014d. v s = 15v, v cm = 0v unless otherwise noted. note 2: this parameter is guaranteed by design and is not tested. typical parameters are defned as the 60% yield of parameter distributions of individual amplifers; i.e., out of 100 lt1014s (or 100 lt1013s) typically 240 op amps (or 120 ) will be better than the indicated specifcation. note 3: this parameter is not 100% tested.
lt1013/lt1014  10134fd typical p er f or m ance c harac t eris t ics offset voltage drift with temperature of representative units temperature (c) ?50 input offset voltage (v) 200 100 0 ?100 ?200 0 50 75 ?25 25 100 125 v s = 15v 1013/14 tpc01 time after power on (minutes) 0 change in offset voltage (v) 5 4 3 2 1 0 4 1 2 3 5 v s = 15v t a = 25c lt1013 cerdip (j) package lt1013 metal can (h) package lt1014 1013/14 tpc03 warm-up drift balanced source resistance () 1k 3k 10k 30k 100k 300k 1m 3m 10m input offset voltage (mv) 10 1 0.1 0.01 v s = 5v, 0v, ?55c to 125c v s = 15v, 0v, ?55c to 125c v s = 5v, 0v, 25c v s = 15v, 0v, 25c ? + r s r s 1013/14 tpc02 offset voltage vs balanced source resistance common mode rejection ratio vs frequency 0.1hz to 10hz noise power supply rejection ratio vs frequency frequency (hz) 10 common mode rejection ratio (db) 120 100 80 60 40 20 0 100 1k 10k 100k 1m v s = 5v, 0v v s = 15v t a = 25c 1013/14 tpc04 frequency (hz) 0.1 power supply rejection ratio (db) 120 100 80 60 40 20 0 100 10k 1 10 1k 100k 1m positive supply negative supply v s = 15v + 1v p-p sine wave t a = 25c 1013/14 tpc05 time (seconds) 0 noise voltage (200nv/div) 8 2 4 6 10 t a = 25oc v s = p2v to p18v 1013/14 tpc06 10hz voltage noise distribution noise spectrum supply current vs temperature frequency (hz) 1 voltage noise density (nv/ hz) current noise density (fa/ hz) 1000 100 10 300 30 10 100 1k current noise voltage noise 1/f corner 2hz t a = 25c v s = 2v to 18v 1013/14 tpc07 voltage noise density (nv/ hz) 10 number of units 200 180 160 140 120 100 80 60 40 20 0 50 20 30 40 60 v s = 15v t a = 25c 328 units tested from three runs 1013/14 tpc08 temperature (c) ?50 supply current per amplifier (a) 460 420 380 340 300 260 0 50 75 ?25 25 100 125 v s = 15v v s = 5v, 0v 1013/14 tpc09
lt1013/lt1014  10134fd typical p er f or m ance c harac t eris t ics input bias current (na) 0 common mode input voltage, v s = +5v, 0v (v) 5 4 3 2 1 0 ?1 common mode input voltage, v s = 15v (v) 15 10 5 0 ?5 ?10 ?15 ?5 ?10 ?15 ?20 ?25 ?30 t a = 25c v s = 5v, 0v v s = 15v 1013/14 tpc10 input bias current vs common mode voltage temperature (c) ?50 input bias current (na) ?30 ?25 ?20 ?15 ?10 ?5 0 25 75 ?25 0 50 100 125 v cm = 0v v s = 5v, 0v v s = 15v v s = 2.5v 1013/14 tpc12 temperature (c) ?50 input offset current (na) 1.0 0.8 0.6 0.4 0.2 0 0 50 75 ?25 25 100 125 v cm = 0v v s = 5v, 0v v s = 2.5v v s = 15v 1013/14 tpc11 input bias current vs temperature large-signal transient response, v s = 15v 5v/div a v = +1 50s/div 1013/14 tpc15 large-signal transient response, v s = 5v, 0v a v = +1 10s/div 1013/14 tpc18 no load input = 0v to 4v pulse 4v 2v 0v small-signal transient response, v s = 15v 20mv/div a v = +1 2s/div 1013/14 tpc14 large-signal transient response, v s = 5v, 0v a v = +1 10s/div 1013/14 tpc17 r l = 4.7k to 5v input = 0v to 4v pulse 4v 2v 0v output saturation vs sink current vs temperature temperature (c) ?50 ?25 0 25 50 75 100 125 saturation voltage (v) 10 1 0.1 0.01 v + = 5v to 30v v ? = 0v i sink = 10ma i sink = 5ma i sink = 1ma i sink = 100a i sink = 10a i sink = 0 1013/14 tpc13 a v = +1 20s/div 1013/14 tpc16 r l = 600 to ground input = 0v to 100mv pulse small-signal transient response, v s = 5v, 0v 100mv 50mv 0 input offset current vs temperature
lt1013/lt1014  10134fd t ypical per f or m ance charac t eris t ics voltage gain vs frequency frequency (hz) 0.01 0.1 voltage gain (db) 1m 10m 1 10 100 1k 10k 100k 140 120 100 80 60 40 20 0 ?20 v s = 15v v s = 5v, 0v t a = 25c c l = 100pf 1013/14 tpc21 load resistance to ground () 100 100k voltage gain (v/v) 1m 10m 1k 10k v o = 20mv to 3.5v with v s = 5v, 0v t a = 25c, v s = 15v t a = ?55c, v s = 15v t a = 125c, v s = 15v t a = ?55c, v s = 5v, 0v t a = 25c, v s = 5v, 0v t a = 125c, v s = 5v, 0v v o = 10v with v s = 15v 1013/14 tpc20 output short-circuit current vs time time from output short to ground (minutes) 0 short-circuit current (ma) sinking sourcing 1 2 40 30 20 10 0 ?10 ?20 ?30 ?40 3 ?55c 25c 25c 125c 125c ?55c v s = 15v 1013/14 tpc19 voltage gain vs load resistance gain, phase vs frequency channel separation vs frequency applica t ions in f or m a t ion frequency (mhz) 0.1 0.3 voltage gain (db) 20 10 0 ?10 phase shift (degrees) 80 100 120 140 160 180 200 1 3 10 t a = 25c v cm = 0v c l = 100pf phase 15v 5v, 0v 15v 5v, 0v gain 1013/14 tpc22 frequency (hz) 10 channel separation (db) 160 140 120 100 80 60 100k 100 1k 10k 1m limited by thermal interaction r s = 1k r s = 100 v s = 15v t a = 25c v in = 20vp-p to 5khz r l = 2k limited by pin to pin capacitance 1013/14 tpc23 single supply operation the lt1013/lt1014 are fully specifed for single supply operation, i.e., when the negative supply is 0v. input common mode range includes ground; the output swings within a few millivolts of ground. single supply operation, however, can create special diffculties, both at the input and at the output. the lt1013/lt1014 have specifc circuitry which addresses these problems. at the input, the driving signal can fall below 0vin- advertently or on a transient basis. if the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the lm124, lm158, op-20, op-21, op-220, op - 221, op-420: a) when the input is more than a diode drop below ground, unlimited current will fow from the substrate (v C terminal) to the input. this can destroy the unit. on the lt1013/lt1014, the 400 resistors, in series with the input (see schematic diagram), protect the devices even when the input is 5v below ground.
lt1013/lt1014 0 10134fd b) when the input is more than 400mv below ground (at 25c), the input stage saturates (transistors q3 and q4) and phase reversal occurs at the output. this can cause lock-up in servo systems. due to a unique phase reversal protection circuitry (q21, q22, q27, q28), the lt1013/lt1014s outputs do not reverse, as illustrated below, even when the inputs are at C1.5v. there is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the lt1013, or one specifc amplifer of the other three on the lt1014, is driven hard into negative saturation at the output. phase reversal protection does not work on amplifer: a when ds output is in negative saturation. bs and cs outputs have no effect. b when cs output is in negative saturation. as and ds outputs have no effect. c when bs output is in negative saturation. as and ds outputs have no effect. a pplica t ions i n f or m a t ion d when as output is negative saturation. bs and cs outputs have no effect. at the output, the aforementioned single supply designs either cannot swing to within 600mv of ground (op-20) or cannot sink more than a few microamperes while swing- ing to ground (lm124, lm158). the lt1013/lt1014s all-npn output stage maintains its low output resistance and high gain characteristics until the output is saturated. in dual supply operations, the output stage is crossover distortion-free. comparator applications the single supply operation of the lt1013/lt1014 lends itself to its use as a precision comparator with ttl com- patible output: in systems using both op amps and comparators, the lt1013/lt1014 can perform multiple duties; for example, on the lt1014, two of the devices can be used as op amps and the other two as comparators. 4v lt1013/lt1014 no phase reversal 2v 4v 0v 6v p-p input, C 1.5v to 4.5v 4v lm324, lm358, op-20 exhibit output phase reversal v s = 5v, 0v 4 2 0 C 100 0 2 0 0 100 input (mv) output (v) input (mv) output (v) voltage follower with input exceeding the negative common mode range comparator rise response time 10mv, 5mv, 2mv overdrives comparator fall response time to 10mv, 5mv, 2mv overdrives 2v 2v 0v 0v 4 50s/div v s = 5v, 0v 50s/div
lt1013/lt1014  10134fd typical a pplica t ions a pplica t ions i n f or m a t ion low supply operation the minimum supply voltage for proper operation of the lt1013/lt1014 is 3.4v (three ni-cad batteries). typical supply current at this voltage is 290a, therefore power dissipation is only one milliwatt per amplifer. noise testing for applications information on noise testing and calcula- tions, please see the lt1007 or lt1008 data sheet. test circuit for offset voltage and offset drift with temperature ? + lt1013 or lt1014 lt1013/14 f06 15v ?15v 100* 50k* 50k* v o resistor must have low thermoelectric potential. this circuit is also used as the burn-in configuration, with supply voltages increased to 20v. v o = 1000v os * ** 50mhz thermal rms-to-dc converter ? + ? + lt1014 lt1014 8 10 9 7 4 11 6 5 0v to 4v output 10k* 10k* 10k* 10k* 10k 10k* 20k full- scale trim 5v ? + lt1014 14 13 12 10k* 100k* 0.01 0.01 ? + lt1014 1 2 3 100k* 0.01 300* 30k* 1f 1f 10k 10k t1a t1b t2b t2a brn red red grn grn brn input 300mv? 10v rms 5v 2% accuracy, dc?50mhz. 100:1 crest factor capability. 0.1% resistor. t1?t2 = yellow springs inst. co. thermistor composite #44018. enclose t1 and t2 in styrofoam. 7.5mw dissipation. * 30k* 1013/14 ta03 ? + 1/2 lt1013 8 4 7 5 6 5v output a r2 r1 1f 1f 5 2 3 15 6 18 +input ?input ? + 1/2 lt1013 1 3 2 output b r2 r1 1f 8 11 12 14 7 13 +input ?input 1/2 ltc1043 1/2 ltc1043 16 0.01 offset = 150mv gain = + 1. cmrr = 120db. common mode range is 0v to 5v. r2 r1 1f 1013/14 ta04 5v single supply dual instrumentation amplifer
lt1013/lt1014  10134fd t ypical a pplica t ions ? + ? + a2 lt1014 6 5 7 6.98k* 1k* 5k flow calib 1f 10m response time 100k 1m* ? + a1 lt1014 2 3 1 1m* 1m* 6.25k** 1m* t2 t1 3.2k* 3.2k** 6.25k** 15 dale hl-25 a4 lt1014 12 13 14 4 11 15v ?15v 300pf 4.7k 15v output 0hz to 300hz = 0 to 300ml/min 1n4148 ? + a3 lt1014 9 10 8 100k 100k 0.1 100k 383k* 2.7k ?15v lt1004-1.2 2n4391 15 heater resistor flow flow pipe t1 t2 1% film resistor. supplied with ysi thermistor network. t1, t2 ysi thermistor network = #44201. flow in pipe is inversely proportional to resistance of t1?t2 temperature difference. a1?a2 provide gain. a3?a4 provide linearized frequency output. * ** 15v 1013/14 ta06 hot-wire anemometer ? + ? + ? + a4 lt1014 13 14 12 0v to 10v = 0 to 1000 feet/minute 10m response time adjust 1f 1f 100k a3 lt1014 9 8 10 500k 2m full- scale flow 12k a2 lt1014 6 7 5 150k* 2k q2 q4 q3 q1 q5 tie ca3046 pin 13 to ?15v. do not use q5 13 ?15v 1000pf 33k 2k q1?q4 ca3046 1k zero flow 3.3k lt1004-1.2 4 6, 8 ?15v 150k* +15v ? + a1 lt1014 2 1 3 q6 tip12o or equivalent 220 500pf 15v ?15v 4 11 0.01f 10k* 27 1w 2k* #328 remove lamp's glass envelope from 328 lamp. a1 servos #328 lamp to constant temperature. a2-a3 furnish linear output vs flow rate. 1% resistor. * 1013/14 ta05 liquid flowmeter
lt1013/lt1014  10134fd t ypical a pplica t ions 5v powered precision instrumentation amplifer ? + lt1014 6 5 ? + lt1014 2 3 7 1 200k* 200k* rg (typ 2k) ? ? ? ? 5v 5v 20k 20k ?input +input ? + lt1014 13 12 14 10k 10k 10k* 10k* 10k* 10k* output 4 11 5v ? + lt1014 9 10 8 to input cable shields 1% film resistor. match 10k's 0.05% gain equation: a = + 1. for high source impedances, use 2n2222 as diodes. 400,000 rg * ? 1f 1013/14 ta07 9v battery powered strain gauge signal conditioner ? + lt1014 13 12 14 ? + lt1014 6 5 7 ? + lt1014 9 10 8 100k 100k 499 499 350 strain gauge bridge to a/d ratio reference 2n2219 330 0.01 4.7k 47f 9v to a/d 22m ? + lt1014 2 3 1 1n4148 100k 100k 100k 0.068 15k 0.068 0.068 15k 3k 15 14 7 6 13 9 9v to a/d convert command 1 5 9v 4 11 74c221 9v sampled operation gives low average operating current 650a. 4.7k-0.01f rc protects strain bridge from long term drifts due to high ?v/?t steps. 1013/14 ta08
lt1013/lt1014  10134fd t ypical a pplica t ions 5v powered motor speed controller no tachometer required ? + a1 1/2 lt1013 2 3 1 6 5 7 100k 0.47 330k 1m 6.8m 2k 0.068 ? + a2 1/2 lt1013 5v 8 4 e in 0v to 3v 2k 3.3m q1 2n3904 0.47 0.068 q2 1n4148 1n4148 2k 82 1k 5v q3 2n5023 1n4001 1n4001 47 motor = canon?fn30?r13n1b. a1 duty cycle modulates motor. a2 samples motors back emf. 1/4 cd4016 1013/14 ta09 + ? + lt1013 6 5 7 8 4 1k 4.7m 120k 2n2222 output 100k* 6.19k 0.005 ? + lt1013 2 3 1 1n4148 lt1004 1.2v 100k 100 10 20k 0.33 0.1 5v 1n4148 1n4148 1n4148 0.05 2n2222 2n2222 2n2222 4.7k 820 270 820 1n4148 ttl input 1n4148 5v meets all v pp programming specs with no trims and runs off 5v supply?no external high voltage supply required. suitable for battery powered use (600a quiescent current). 1% metal film. * 600s rc 21v dale #tc-10-04 1013/14 ta10 5v powered eeprom pulse generator
lt1013/lt1014  10134fd t ypical a pplica t ions methane concentration detector with linearized output + ? + ? 13 12 14 a4 lt1014 74c04 74c04 74c04 470pf 10k 470pf 5v ?5v 1n4148 output 500ppm to 10,000ppm 50hz to 1khz 2k 1n4148 (4) + ? 6 5 7 a2 lt1014 q4 q3q2 q1 150k* 2k 1000pf 100k* + ? 2 3 1 a1 lt1014 4 5v 5k 1000ppm trim 12k* ltc1044 10f 4 2 3 5 8 5v sensor 9 10 8 a3 lt1014 11 100k* 390k* lt1004 1.2v 10f 0.033 14 1 ?5v 5v cd4016 1% metal film resistor sensor = calectro-gc electronics #j4-807 or figaro #813 * ?5v ca3046 1 14 2.7k 1013/14 ta11 + + low power 9v to 5v converter ? + lt1013 1 2 3 330k 9v lt1004 1.2v 120k 1% 390k 1% 5v 20ma 2n5434 + ? lt1013 7 5 6 hp5082-2811 100a 8 4 9v 47k 47 1n4148 l 10k 10k 2n2905 l = dale te-3/q3/ta. short circuit current = 30ma. 75% efficiency. switching preregulator controls drop across fet to 200mv. 9v input v d = 200mv 1013/14 ta12 +
lt1013/lt1014  10134fd t ypical a pplica t ions 5v powered 4ma to 20ma current loop transmitter ? ? + a2 1/2 lt1013 3 2 1 ? + a1 1/2 lt1013 6 5 7 100k 4.3k 5v 8 4 lt1004 1.2v 5v 10f 4ma to 20ma out fully floating 8-bit accuracy. ? 0.1 68k* 301* 1k 20ma trim 4k* 10k* 2k 4ma trim input 0v to 4v to inverter drive t1 1n4002 (4) 1013/14 ta14 + fully floating modifcation to 4ma-20ma current loop ? ? + a2 1/2 lt1013 6 5 7 ? + a1 1/2 lt1013 2 3 1 input 0v to 4v 1k 4ma trim 4k* 10k* 4.3k 5v 8 4 lt1004 1.2v 2k q4 2n2222 100pf 5v 0.33 100k 10k* 80k* 10k* 20ma trim 10f q1 2n2905 q2 2n2905 10k 10k 0.002 820 820 10f 100* 4ma to 20ma out to load 2.2k maximum 68 q3 2n2905 5v 12-bit accuracy. 1% film. t1 = pico-31080. ? * 1n4002 (4) t1 74c04 (6) 1013/14 ta13 + +
lt1013/lt1014  10134fd t ypical a pplica t ions 5v powered, linearized platinum rtd signal conditioner ? + a4 1/4 lt1014 9 10 8 output 0v to 4v = 0c to 400c 0.05c gain trim 1k 3.01k 150 ? + a2 1/4 lt1014 2 3 1 ? + a3 1/4 lt1014 6 5 7 2m 5k linearity 200k 200k 2m 50k zero trim 8.25k 274k 10k ? + a1 1/4 lt1014 13 12 14 5v 4 11 250k 2.4k 5% lt1009 2.5v 5v sensor q2 q1 167 499 1.5k rosemount 118mf all resistors are trw-mar-6 metal film. ratio match 2m?200k 0.01%. trim sequence: set sensor to 0 value. adjust zero for 0v out. set sensor to 100c value. adjust gain for 1.000v out. set sensor to 400c. adjust linearity for 4.000v out, repeat as required. 2n4250 (2) 1013/14 ta15 strain gauge bridge signal conditioner ? + 1/2 lt1013 5 6 7 0.047 2k gain trim 46k* 100* output 0v to 3.5v 0psi to 350psi 0.33 100k 10k zero trim a d e c 301k v ref 220 5v 1.2v out reference to a/d converter for ratiometric operation 1ma maximum load ? + 2 3 1 39k 8 4 5v 1/2 lt1013 0.1 8 5 2 4 100f 100f pressure transducer 350 v ?v ref ltc1044 1% film resistor. pressure transducer?blh/dhf?350. circled letter is pin number. * lt1004 1.2v 1013/14 ta16 + +
lt1013/lt1014  10134fd t ypical a pplica t ions lvdt signal conditioner ? + lt1013 1 3 2 200k 10k out 0v to 3v 1f 100k 14 8 1313 7 12 11 blk grn blue rd- blue ? + lt1011 7 2 3 1/2 ltc1043 1 8 4 1k 5v to pin 16, lt1043 100k 7.5k 0.01 100k phase trim lvdt yel-blk ? + lt1013 7 5 6 5v ?5v 0.005 0.005 30k 30k 10k 4.7k 1.2k 1n914 lt1004 1.2v 10f 2n4338 lvdt = schaevitz e-100. frequency = 1.5khz yel-rd 1013/14 ta17 + triple op amp instrumentation amplifer with bias current cancellation ? + 1/4 lt1014 9 10 8 output ? + 1/4 lt1014 6 5 7 + ? 1/4 lt1014 12 13 14 4 11 r3 r2 r2 r1 r g r1 + ? 1/4 lt1014 2 3 1 v ? v + 100k 10pf 2r 10m r 5m +input ?input r3 gain = 1 +  2r1 r g r3 r2 input bias current typically <1na input resistance = 3r = 15m for values shown negative common mode limit = v ? + i b s 2r + 30mv = 150mv for v ? = 0v i b = 12na 2r 10m 1013/14 ta18
lt1013/lt1014  10134fd t ypical a pplica t ions voltage controlled current source with ground referred input and output ? + lt1013 3 2 1 8 4 + ? a2 lt1013 6 5 7 1m lt1004 1.2v 1.2k 1n914 0.01 100k 100 120k 30k v batt 6v 0.003f 5v output 50k output adjust 10 2 4 5 3 8 ltc1044 100 1n914 12 output 10 2n2219 0.009v dropout at 5ma output. 0.108v dropout at 100ma output. i quiescent = 850a. 1013/14 ta19 + + low dropout regulator for 6v battery ? + 1/2 lt1013 3 2 1 8 4 5v 0v to 2v 1f 8 11 12 14 7 13 1/2 ltc1043 0.68f 1k 100 1f i out = 0ma to 15ma i out = v in 100 for bipolar operation, run both ics from a bipolar supply. 1013/14 ta20
lt1013/lt1014 0 10134fd t ypical a pplica t ions ? + 1/2 lt1013 1 8 4 3 2 + ? 1/2 lt1013 7 6 5 5v 1m* 5m* 20k 4.22m* 4.22m* 100k 5v 1m* r t1 3.2k 1m* r t2 6.25k r t ysi 44201 2.16k* 3.4k* 4.3k temperature compensation generator lt1009 2.5v 5v 680 100 100k 560k mv-209 3.5mhz xtal oscillator supply stabilization oscillator 510pf 510pf 3.5mhz output 0.03ppm/c, 0c to 70c 2n2222 1% film 3.5mhz xtal = at cut ? 3520' mount r t near xtal 3ma power drain thermistor-amplifier-varactor network generates a temperature coefficient opposite the crystal to minimize overall oscillator drift * ? 1013/14 ta22 low power, 5v driven, temperature compensated crystal oscillator (txco) ? ? + lt1013 6 5 7 ? + lt1013 2 8 4 3 1 1m 1.4m 82k 0.005 2n5114 2n4391 lt1004 1.2v 100k 6v 16v ?16v 0.005 10 15v out ?15v out 200k v out adj 15pf 15pf 1f 10 16v ?16v l1 1mhy 2n3904 2n3906 10k 10k 10k 22k 22k 10k +v q1 clk 2 d1 q1 q2d2 clk 1 q2 74c74 + 100khz input l1 = 24-104 aie vernitron 5ma output 75% efficiency 6v 74c00 6v = 1n4148 1013/14 ta21 + + 6v to 15v regulating converter
lt1013/lt1014  10134fd sche m a t ic d iagra m 1/2 lt1013, 1/4 lt1014 9k 9k 1.6k 5k 2k 5k q5 q6 1.6k q16 q30 q14 q13 q3 q4 q1 q21 400 q2 q22 400 q12 q11 1.6k q15 100 2k q9 q7 q29 q17 1.3k q20 q26 10pf q8 q23 q31 3.9k 21pf 2.5pf q32 1k q18 q19 q25 2.4k 18 100pf 4pf 2k 75pf q24 30 42k 14k q33 q34 q37 q38 q40 j1 q39 q41 600 800 v ? v + in in q10 output q35 q36 q27 q28 ? + 1013/14 sd
lt1013/lt1014  10134fd p ackage descrip t ion j8 0801 .014 ? .026 (0.360 ? 0.660) .200 (5.080) max .015 ? .060 (0.381 ? 1.524) .125 3.175 min .100 (2.54) bsc .045 ? .065 (1.143 ? 1.651) .045 ? .068 (1.143 ? 1.650) full lead option .023 ? .045 (0.584 ? 1.143) half lead option corner leads option (4 plcs) .300 bsc (7.62 bsc) .008 ? .018 (0.203 ? 0.457) 0o ? 15o .005 (0.127) min .405 (10.287) max .220 ? .310 (5.588 ? 7.874) 1 2 3 4 8 7 6 5 .025 (0.635) rad typ note: lead dimensions apply to solder dip/plate or tin plate leads obsolete packages j14 0801 .045 ? .065 (1.143 ? 1.651) .100 (2.54) bsc .014 ? .026 (0.360 ? 0.660) .200 (5.080) max .015 ? .060 (0.381 ? 1.524) .125 (3.175) min .300 bsc (7.62 bsc) .008 ? .018 (0.203 ? 0.457) 0o ? 15o 1 2 3 4 5 6 7 .220 ? .310 (5.588 ? 7.874) .785 (19.939) max .005 (0.127) min 14 11 8910 13 12 .025 (0.635) rad typ note: lead dimensions apply to solder dip/plate or tin plate leads .200 (5.080) typ .027 ? .045 (0.686 ? 1.143) .028 ? .034 (0.711 ? 0.864) .110 ? .160 (2.794 ? 4.064) insulating standoff 45o h8(to-5) 0.200 pcd 0204 .050 (1.270) max .016 ? .021** (0.406 ? 0.533) .010 ? .045* (0.254 ? 1.143) seating plane .040 (1.016) max .165 ? .185 (4.191 ? 4.699) gauge plane reference plane .500 ? .750 (12.700 ? 19.050) .305 ? .335 (7.747 ? 8.509) .335 ? .370 (8.509 ? 9.398) dia lead diameter is uncontrolled between the reference plane and the seating plane for solder dip lead finish, lead diameter is .016 ? .024 (0.406 ? 0.610) * ** pin 1 h package 8-lead to-5 metal can (.200 inch pcd) (reference ltc dwg # 05-08-1320) j8 package 8-lead cerdip (narrow .300 inch, hermetic) (reference ltc dwg # 05-08-1110) j package 14-lead cerdip (narrow .300 inch, hermetic) (reference ltc dwg # 05-08-1110)
lt1013/lt1014  10134fd p ackage descrip t ion n8 1002 .065 (1.651) typ .045 ? .065 (1.143 ? 1.651) .130 .005 (3.302 0.127) .020 (0.508) min .018 .003 (0.457 0.076) .120 (3.048) min 1 2 3 4 8 7 6 5 .255 .015* (6.477 0.381) .400* (10.160) max .008 ? .015 (0.203 ? 0.381) .300 ? .325 (7.620 ? 8.255) .325 +.035 ?.015 +0.889 ?0.381 8.255 ( ) note: 1. dimensions are inches millimeters *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .010 inch (0.254mm) .100 (2.54) bsc n14 1103 .020 (0.508) min .120 (3.048) min .130 .005 (3.302 0.127) .045 ? .065 (1.143 ? 1.651) .065 (1.651) typ .018 .003 (0.457 0.076) .005 (0.127) min .255 .015* (6.477 0.381) .770* (19.558) max 3 1 2 4 5 6 7 8910 11 1213 14 .008 ? .015 (0.203 ? 0.381) .300 ? .325 (7.620 ? 8.255) .325 +.035 ?.015 +0.889 ?0.381 8.255 ( ) note: 1. dimensions are inches millimeters *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .010 inch (0.254mm) .100 (2.54) bsc n8 package 8-lead pdip (narrow .300 inch) (reference ltc dwg # 05-08-1510) n package 14-lead pdip (narrow .300 inch) (reference ltc dwg # 05-08-1510)
lt1013/lt1014  10134fd p ackage descrip t ion so8 0303 .016 ? .050 (0.406 ? 1.270) .010 ? .020 (0.254 ? 0.508) s 45 0? 8 typ .008 ? .010 (0.203 ? 0.254) .053 ? .069 (1.346 ? 1.752) .014 ? .019 (0.355 ? 0.483) typ .004 ? .010 (0.101 ? 0.254) .050 (1.270) bsc 1 2 3 4 .150 ? .157 (3.810 ? 3.988) note 3 8 7 6 5 .189 ? .197 (4.801 ? 5.004) note 3 .228 ? .244 (5.791 ? 6.197) .245 min .160 .005 recommended solder pad layout .045 .005 .050 bsc .030 .005 typ inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) s16 (wide) 0502 note 3 .398 ? .413 (10.109 ? 10.490) note 4 16 15 14 13 12 11 10 9 1 n 2 3 4 5 6 7 8 n/2 .394 ? .419 (10.007 ? 10.643) .037 ? .045 (0.940 ? 1.143) .004 ? .012 (0.102 ? 0.305) .093 ? .104 (2.362 ? 2.642) .050 (1.270) bsc .014 ? .019 (0.356 ? 0.482) typ 0 ? 8 typ note 3 .009 ? .013 (0.229 ? 0.330) .005 (0.127) rad min .016 ? .050 (0.406 ? 1.270) .291 ? .299 (7.391 ? 7.595) note 4 s 45 .010 ? .029 (0.254 ? 0.737) inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. pin 1 ident, notch on top and cavities on the bottom of packages are the manufacturing options. the part may be supplied with or without any of the options 4. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) .420 min .325 .005 recommended solder pad layout .045 .005 n 1 2 3 n/2 .050 bsc .030 .005 typ s6 package 6-lead plastic tsot-23 (reference ltc dwg # 05-08-1636) sw package xx-lead plastic small outline (wide .300 inch) (reference ltc dwg # 05-08-1620)
lt1013/lt1014  10134fd information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. r evision h is t ory rev date description page number d 05/10 updates to typical application hot-wire anemometer updated related parts 12 26 (revision history begins at rev d)
lt1013/lt1014  10134fd linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com ? linear technology corporation 1990 lt 0510 rev d ? printed in usa r ela t e d p ar t s typical a pplica t ion part number description comments lt2078/lt2079 dual/quad 50a single supply precision amplifer 50a max i s , 70v max v os lt2178/lt2179 dual/quad 17a single supply precision amplifer 17a max i s , 70v max v os ltc6081/ltc6082 dual/quad 400a precision rail-to-rail amplifer v s = 2.7v to 6v, 400a max i s , 70v v os 0.8v/c tcv os ltc6078/ltc6079 dual/quad 72a precision rail-to-rail amplifer v s = 2.7v to 6v, 72a max i s , 25v v os 0.7v/c tcv os step-up switching regulator for 6v battery ? + ? + lt1013 5 8 4 6 7 lt1013 3 2 1 0.1 200k lt1004 1.2v 130k 300 output 15v 50ma input 6v 100 1n5821 2n5262 l1 1mhy 2.2 5.6k 5.6k 220pf 220k 1m 22k 2n2222 0.001 lt = aie?vernitron 24?104 78% efficiency 1013/14 ta23 + +


▲Up To Search▲   

 
Price & Availability of LT1014ACJPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X